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SUMMARY 

The viscous transverse curvature effect in compressible axially 

symmetric  laminar boundary layer flow has been investigated,   and it is 

found that the effect is characterized by the parameter      Z\/r0 which is 

essentially the ratio of the boundary layer thickness to body radius.     It 

is  shown that the Busemann and Crocco integrals of the two-dimensional 

energy equation for  Pr   — 1,   are  still valid for axially-symmetric  flow in 

which the transverse curvature effects are considered.    By a generaliza- 

tion of  Mangier's transformation  it. is then shown that the boundary layer 

equations are  reducible to an almost two-dimensional form,   making the 

analysis  simpler  ior two asymptotic  flow regions characterised by   L^/r 

>>1 and     Qi/r     less  than or of the order of unity.     It is with the  latter 

region that Lhe present paper is primarily concerned,   and for this case 

it is .show., that the additional term in the momentum a:,d energy equation, 

which differentiates it from the  two-dimensional form,   behaves like an 

axial pressLi.-e gradient.    On this basis the  results of previous authors are 

interpreted,     B'xcept for the case of a "near paraboloid" with  zero pressure 

^rad.-ent whe. e 'similar1' profiie-2 can be found ior  ail values of   Z^/r.     it 

irr- necessary to obtain the "exact"  solutions in the  range where    Zi/r0 is 

teas than or possibly of the order of unity by means o( asymptotic expansions 

ir.< ascending powers of a parameter which is small compared to unity but, 

proportional   to    &>/r   .     It is  shown how the  asymptotic  solutions lor the 

velocity and temperature can be- found for "zero pressure  gradient"  when 

.ni^airiLrtBti...•. „< ,•  i..",: 'A.;£kf'-> •'' -'*" • ^^'•^'^••^''^^^•rrTfmSMumMSIrmM.^-tlriMkf I'I AyjfaTrftiiiriarrlfiirtMteift 

l^^^p^f^ 
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the body shapes p,c like  rr a ax.    &nd r    — ae th I he se r o      app r ox i m a1i o n 

'.a the Mangier  result. 

The first order correction to the Mangier formulation for Pr~  1 

shows,   that at least, in the case of the  roue and cylinder,   the effect on 

both the skin friction coefficient and heat transfer rate can become appre- 

ciable  ir. the ransje 'vhere      A/r     is  less than or of the order of unity. «* '   o 

At a constant    A /r   ,   the effects a/c increased in magnitude when either o 

the ratio of wall to fre^ stream temperature,   or Mach number,   is in- 

creased.     Also,   all other conditions being equal    for the  same value of 

/Jw'r    the  skin friction coefficient and he nt transfer increase on the o 

cylinder is greater than that on the cone. 

V 

**v 



LIST OF SYMBOLS 

The  subscript !'e" denotes quantities iti the inviscid external flow,   ;tnd 

the  subscript 'OO'' denotes values in the undisturbed free stream far from 

the body.     The subscript "w"  refers to values of the physical quantities at 

the wail    and the  subscript ''M"  refers to the value given by the Mangier for- 

mulation. 

x       coordinate measured along the body surface with origin at the nose 

y       coordinate normal *o surface 

©      azimutha! angle 

angle tangent to meridian profile makes with body axis 

distance of any point on the body 'x,   O, &) to the central axis 
ro =   r0   x> 

distance from any point 'x,    y, O)    to the axis of symmetry,   m the present 
paper  r   x, y) - r   [x) •+ y   coscx 

longitudinal curvature in meridian plane 

transverse curvature in plane perpendicular to flow,   l/r for axial 
symmetry 

CK 

K- 

f 

component of velocity in x direction 

component of velocity in y direction 

static   pressure 

mass density 

absolute temperature 

characteristic  reference length of body 

boundary layer thickness 

&i&?Mt£ 
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'Rex^e 

Pr 

bour-.dary layer displacement thickness, 

>* cos c* 

gas constant per gram 

specific heat at constant pressure 

specific heat at constant volume 

ratio of specific  heals      c   /c 
P     v 

coefficient oT viscosity 

coefficient of kinematic  viscosity 

coefficient of thermal conductivity of gas 

enthalpy,     c      T 

Mach number,     u    / j   ~ft    R Tfi 

Reynolds number based on the length   x,    and quantities in the 
inviacid external flow,     u  x/v 

«• e 

Prandtl number of the gas.    c    M /k 
A"  / 

factor of u» oporticnality in the equation \h/Ue) —• Cg (T/Te) 
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defined by u 
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It 

>        T/T A 

X       sheer stress,    M u 

c        local .skin friction coefficient,     T w/ 7 /Jf U^, a/3*1 

local rate of heat transfer from the surface per unit area per unit 

time, -kw'Ty>y=o 

X    \ 
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1. INTRODUCTION 

1   Preliminary Considerations and Transverse Curvature 
Parameter 

The steady laminar boundary layer on an unyawed body of revo- 

lution differs from that on a two-dtrnensi rnal shape in that the axialiy- 

symmetric boundary layer must not only grow in thickness with dis- 

tance along the  surface,   but in addition must also spread circum- 

ferentially as it grow:;.     Clearly therefore,   the rate at which the body 

ciicumference changes with length will be the axi ally - symmetric geo- 

metrical factor which will determine the characteristics of the retarded 

viscous layer.     The body geometry effect can therefore be considered 

to manifest itself through the two surface curvatures shown in Fig.   1 

for a pointed body of revolution.     The fust is the longitudinal curvature 

in a meridian plaae,   denoted by K ,   while the second is the transverse 

curvature,   Ky,   of the body in a plane perpendicular to the flow.    Now, 

it is evident that the longitudinal surface curvature is a quantity wmch 

is associated not only with axiai symmetry,   but also with any curved 

surface in two-dimensional flow      In the usual, treatment of boundary 

layer problems,   it is generally assumed that   h K   and    t\~ dK ,     are 
die" 

small compared to unity,     here a   is the boundary layer thickness),   in 

which case the effects of longitudinal surface curvature are negligible. 

Of course,   thr:se conditions impose certain restrictions or-, the body 

1 
shape,   and the effect of  removing 'hem has been studied by M;irphy 



for incompressible flow with zero pressure gradient.    However,   so far as 

the present paper is c   ncerned    this longitudinal curvature effect will be neg- 

The transverse curvature of the body,   K   ,   in a plane perpendicular to 

the flow,   is distinguished by the  fact that :t arises only from the three- 

dirne-nsional nature of the problem.    Of course     for a body of revolution the 

section in any transverse plane  is by definition a circle,   so that here the 

curvature  is  simply the inverse of the body radius,   r   ,   at any position along 

the axis.     It is the purpose of this work to examine what effect the mcroduc - 

tion of this transverse curvature has on the values of such quantities as the 

viscous shear and heat flux     particularly at the body surface.     The present 

paper indicates the fundamental physical and mathematical ideas involved; 

the more detailed computations and numerical results being reserved for a 

forthcoming report.    In addition,   the future work will contain a more com- 

plete analysis of the effect of pressure gradient in axially-symmetric O.nxv 

and its "interaction" with the transverse curvature effect.    It should be 

I. 3, 4 
noted at this point that the hypersonic  self-induced pressure effect 

generated by the interaction of the longitudinal curvature of the viscous 

l&yer with the external flow,   could under certain circumstances become 

more important than the transverse curvature effect itself.     Although this 

important question certainly requires further investigation,   it is beyond 

the scope of the present paper except for certain brief comments. 

5 
Cheng    in unpublished lecture notes has shown that in general a 

solution i.o the boundary layer problem,   in which the transverse curvature 



effect is considered,   is not possible by a  single transformation of the 

equations to a two-dimensional form without soitii assumption as to the 

magnitude of the curvature effect.    Clearly,   a measure of this magnitude 

so far 33 the viscous flow is concerned would be given by the ratio    of 

the transverse geometrical body curvature to the transverse curvature 

of the viscous layer itself.    Because of" the axial  symmetry the rate of 

change of curvature with respect to the azimuthai angle is zero,   so that 

while two parameters measure the longitudinal curvature effect,   only 

one is needed to characterize the transverse curvature effect. 

At this point let us define the coordinate system   x    y,   ©)    where 

the body surface is given by y - constant -O,   x is the distance measured 

i long {jllKZ     UO'W y from some  reference point    wnic.h m the  present o?.ner 

is taken to be the nose ci  *h«» body (x — O),   and G is the azimuthai angle, 

[see Fig,   1).     Let r — r{x.-. y) be the d.s.ance from any point 'x,   y,   0) to 

the axis of symmetry,   and suppose r   — r     x) is the distance of any 
o        o 

* C .      If  a!?   »e«iimf(i     the 

thickness of the Uu-.mdaty layer is smsi! romnnrcH with the longitudinal 

radius of curvature,   l/K,   ,   then at any point m the boundary layer 

poir.i, on  tiie uouy  (A,   C,   C,  lo  Lh_   ,:cr.t: v! 

r >•   vi   ~ r     x) -t- y    cos c*. 

where <X is the angle the tangent to the meridian profile males v/ith 

the axis. Although the characteristic viscous length is the boundary 

l.-».ver thtckness   b   .   it i -;• n-nn- convenient to deal with the displacement 
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thickness,   S *,   because it is capable of precise definition. It follows 

that the curvature ratio is given by 

K, 

K. 

body- 

vise 

1  f K* coso< 
1 T 

A 
o o 

Here,     /_$, —  S *cosf<     is the projection of the displacement thickness onto 

the transverse plane,   (see Fig,   I'.},     Thus,   so far as the present problem 

is concerned,   the  significant parameter is the  ratio of the boundary layer 

thickness,   or more precisely the displacement thickness,   to the body 

** 
radius. Therefore     certain simplifications in the complete axially- 

symmetric  Doundary layer equations of continuity,   momentum,   and energy 

should be  possible,   depending upon the value of   .lN /r      in comparison to 

unity. 

i,2    Description and Range of Main Flow Regions 

Referring to Fig. 2 - in which a cone in supersonic flow is chosen 

to illustrate the body of revolution - two main asymptotic flow regions 

over a given body can be distinguished primarily upon the basis of the 

* Sec discussions p. 125, Ref. 6, p. IS if., Ref. 2, and p, 381, Ref. 
7. By definition the displacement thickness in compressible flow is given 
by 

:v 
•>o 

1    -    (    ou/   n      u   )   I     dy v   /     '   / e      e ' 

** This statement assumes cos <;< to be unity so that L-~^> '-" Q *, 
a condition which is almost true ior the slender bodies which are under 
consideration,   except near a blunt, forward  stagnation point. 



order of     Z__\ /r     . For the body of Fig,   2 the two main flow regions 
o 

are respectively.    I,   a ,:nose"  region distinguished by the fact that 

/ \/r     >•>   1    and II,   a "downstream" region where    /JS IT    is "of o & o 

the order or less than unity".     The application of the term asymptotic 

flow region to the range where   L\/T      is of the order or less than 

unity might seem somewhat unjustified,   since by accepted definition 

one would require that    /A /r     ,   or at least i^Js/r   )    be  small com- 1 '    o • '    o 

pared to unity.     However,   the region is  referred to as asympototic 

because,   as will be shown,   the asymptotic expansion parameter for 

the physical variables,   which is directly proportional to L~S/r     ,   is 

m general small compared to unity when  Z_^ /r      is of the order or 

less than unity. 

The two regions I,   and II are separated by a 'transition" zone 

wheie    /A/r      is intermediate between the nose and downstream '    o 

region,    In the present investigation the nose of the body is consider- 

ed mathematically sharp and the "immediate" nose region where 

slip,   temperature  jump and other kinetic effects could become im- 

portant is neglected.     This would exclude from consideration a zone 

whose extent for compressible flow in terms of the local Reynolds 

* Here,   a pointed nose body of revolution is considered.    In 
the case of a cylinder with its generators parallel  to the flow, 
(sufficiently slender  so that the   LS IT      effect ente rs).   the regions 
will be  reversed in their relation to distance from the nose when 
compared to the pointed body. 
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number would be of the order of Re     • — 10 1VT       where here M is  the  local 

Mach nurrsher.     The overall, flow problem will  then he treated in such a 

•way that all possible information about the nature of the flow regions down- 

stream of the "immediate" nose region is obtained,   which does not depend 

on the detailed history of the flow in this region.    However,   as is usual sn 

boundary laye*- theory the origin of the co:rdinate system will be taken at 

x   — O,   or the nose where the boundary layer thickness is supposed to be 

zero. 

Before discussing the regions in more detail,   a criterion is needed 

to determine the extent of the various zones,     This can be obtained from 

the following relation for an insulated cone of half-angle c<   ,   in  *';pe -sonic 

flow 

/A\               (a r-nt+    +0-375 K ) \f 
/j% ' i  LJLP 

' /M UWi    'X   J(lu.^)e 

Here,   the specific heat ratio has been taken equal to 1,4,   the subscript "e" 

* Th'.s relation was obtained using the flat, plate,   compressible laminar 
boundary layer solution for constant wall temperature and specific heat,   a 
linear viscosity-temperature  relation,   and Pr =• 1,   (see e.g.,   Ref.   2), 

From Mangier's transformation   ,   division by    J 3 gives the axially-symmetnc 
value for a cone in supersonic flow,   valid m the range where   Z-^/r     <   <-  1. 
This solution is examined when the zone II   is considered, its use m this in- 
stance is only to permit, an estimate of the lateral extent of the  regions being 
studied. 

5*«e«Ma^5wa»;tf«(s^?.»,i',a<M(&»i?«i««Wi^^ 



refers to the  ir.viscic)  values of the physical quantifies downstream ot 

the nose  shock,   and C~ is a parameter which appears in the linear 

viscosity-temperature law to be introduced later.    It must he emphasized 

that the above relation is or.ly intended to give the orders of magnitude 

involved.     Thus,   it can be seen that the more slender the cone,   the 

closer to the nose,   or the higher the ilight speed,   the greater will be 

the transverse curvature effect in compressible flow. 

Figure 3 is a plot of Eq.     1),   with  £~--/r    as the parameter, 

where the abscissa is the Mach number behind the conical shock,   and 

the ordinate is       /^w\ 0/       J    f{"*»)t    ,     It is important at this point   to 

note that it is the ordinate parameter when divided by      J 3 which turns 

out later to be the proper asymptotic expansion parameter,   {§),   for the 

cone.     In this figure,   (Re   )      is the Reynolds numbei  based on conditions 

downstream of the  shock and distance along the cone surface.     The 

Reynolds number is to be interpreted as denoting the lateral extent of 

for the particular   ZA/r      range being studied^    Strictly speaking of 

course,   the cone solution should only be valid for  supersonic flow 

with an attached shock,   in order to satisfy the condition that the 

pressure gradient be zero,   however the values are carried down to 

zero Mach number for continuity purposes. 

Figure  3 is even more general if it is  recognized that to the 

same order  of approximation it could be  used to discuss  the  cylinder 

'»JUkaiMnaBiB<«m»i««iii«M^ 



by the artiiice of dividing the ordinatc  scale by    J   3.   and considering tan c^ 

to be replaced by r   /x where  r      is the cylinder radius and x the distance 

from the. nose.    In this case,   the  subscript "e" would denote the conditions 

in the undisturbed free stream far from the body.     With these substitutions 

the ordinate is then exactly the asymptotic expansion parameter,   ' c ), 

which will be used later for the cylinder. 

What, is important to note is that for   £J> /r    --•  1,   the asymptotic ex- 

pansion parameter   J     ,   'for both the cone and cylinder),   will have a maxi- 

mum "'alue of around 1/4 in supersonic flow.     Furthermore,   its value will 

drop off rapidly with either increasing Mach number or decreasing   L-S/r   . 

The nose region (I) is characterized by the fact that ZA/r      ">^>    I. 

In other words,   in this zone  the stress term arising from the transverse 

curvature becomes of the  same order of magnitude as the usual viscous 

stress term m the momentum equation.     An analogous statement holds true 

for the heat flux terms in the energy equation.    Obviously the above con- 

dition^ ar«2 ii.^ , r^i   only certain rar.gec of Mach and Reynolds numbers.    In 

actuality   / \ /r     —  1U is most probably the lower limit for what could be 
o 

taken to be a value of the transverse curvature parameter  which is  supposed 

to be large compared to unity,     Therefore,   if the nose region is considered 

A 
to be  represented  by that area above  the line cJi /r,., =   10,   then it follows al- 

most immediately that the actual practical range in which this region has 

any importance may be rather limited below a Mach number of 10.     In fact. 

if   /\/r     =   10,   the cone hslf-ang)e has to be as  small as I    even though the 
o 

Mach number be as high as  7.7  tn ordsr that the effect extend to a Reynolds 

'S*E»3feHISHE«K2Si«£l8aE8 fiiS3SS3S*E2K» 
mxmtmmsaimmmmBSBi 



number of 10, 000,   (C   ^ !.,   tan<=<{Re   )    =1.75).     However    for Mach 
e j .x c 

numbers greater  than about 4,   when the  self-induced hypersonic viscous 

parameter    A.  — jC        M    //{Re   )     —•- I, the hypersonic viscous 

effects can become important.     Using ~X_ •= i as a criterion    calculations 

and Fig.   3 show the nose region to be affected by the  self-induced pressure 

o 
gradient even tor cones as slender as 1     ,     It ta likely therefore,   that 

above M     ^s  4 the hypersonic  viscous phenomena may be at least as 

important as  the transverse  curvature effects  for the  region  in which 

/2h/r     >/»    1.     In any event a solution fot   the nose region is useful in 

the  sense that it serves as the limiting case with which to bridge the 

"transition" zone.     It could also conceivably  serve as an aid in checking 

any approximate  solution intended to cover the  spectrum of   /.. ,\ /r 
o 

9 Recently this regime has been considered by Stewartson    who 

examined the case of the "infinitely" thin cylinder in the absence of 

pressure gradients in incompressible flow.     He found that for this 

-   limiting case the leading term in the asymptotic expansion of the axial 

velocity component is simply the mam stream velocity and the ne-<t 

10 
term i3 the same as that derived by Oseen's method.     Mark    working 

under the direction of Lees has obtained "exact"  solutions to the large 

Z3/r     problem for the  incompressible flow over a paraboloid of revo- 

lution    with zero pressure  gradient,   utilizing Stewartson's  result that 

the limiting form of the fiow is of the Oseen type.     Knowing the exact 

solution  it is  understood  that he  has developed an approximate  momen- 

turn integral method to solve  the large Z_j>/r     problem,   by using a 

te<SS^T®*23^^ w&mBmm3i%s 
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Karman-Pohlhausen technique which is modified by adding an appropriate 

15 
logarithmic term to the velocity distribution.    Co-per and Tulin      however 

II * 
say that Pretsch     found similar    velocity profiles in treating the  same prob- 

lem as that considered by Stewartson.     This result is in direct contradic- 

tion to the one found in Ref,   9.     Unfortunately at the time of writing the 

authors have been unable to obtain Preksch's paper in an effort tc resolve 

the apparent contradiction.    So far as the present paper is concerned this 

region will not be considered further except insofar as the boundary layer 

equations which are valid for it a. e written down,   and also insofar HS> cer- 

tain general solutions are obtained which hold for all values of CJ\/r    .    For 

example,   reference is made here  to particular integrals of the energy equa- 

tion and io the "zero pressure gradient" flow over a nearly parabolic body 

of revolution for which the  equations are noted. 

Just downstream of the nose region is the transition zone m which 

•ge comparer! with o^p,   nor of the order of unity.    In 

Fig.   3,   this zone can be considered to be encompassed by the area contain- 

ed between the curves of   t\ /r    ~  1 and 10,    Here,   in general    analytic 

solutions of the  equations of motion are difficult to obtain,   and it is  probable 

that an extension of an approximate momentum-integral technique to this 

domain would be required in order to determine a solution.    Of course if 

the  large    Z2S/T0 result is known,   it may also be possible to "link up" a 

solution through this  region. 

In  region II    Z~\/r .   is of the order or  less  than unity.     This  zone  is 

r •    o 

* Simiiai   in the sense that the velocity distribution function is a func- 
tion of a single  variable of the form y times a function A    where x and y 
are  respectively the distances measured along and perpendicular to the 
boundary. 



—B—i mi —I   ——turn WBilWWfWitlllMMMM 

characterized by the fact that the effects produced by the transverse 

curvature can be considered to be essentially a perturbation of a flow 

which,   in the limit of Z_A/r    very much less than unity    approaches a 

two-dimensional pattern.     That is, it is clear that as one proceeds down- 

stream alonj* the cone the transverse curvature effects must decay. 

In Fig,   3 this downstream legion may be considered as the area lying 

below the curve of LJ^/T   —-  !.     It is quickly evident from the curves 
'    o • ' 

that the "weaker" transverse curvature effects can extend over the 

major portion of the body,   (s?iy a cone whose half-angie is as much as 

o 
5   )     for  Mach numbers which are not large.     Actually this domain can 

be thought of as being divided into three  sub-regions each one of which 

is simply a limiting case of the other. 

in the  sub-region (.3    .Fig.   2) very far downstream of the nose, 

r     i,    c>o so that     Z_i>   It     tends to zero,   and Kp /K->       ~> 1, 
body vise- 

Here,   the effect of the axial-symmetry is negligible and the flow 

approaches a two-dimensional pattern,     Iu jjia».U..^ L«icvc:,   it ..: ur 

likely that this domain would be  reached before transition to turbulent 

o 
flow took place.     For example,   on a 5    cone at a Mach number of J, 

the Reynolds number is already 1. 5 x 10     for £J±/r    = 0. 01. 

Somewhat further upstream,   m the sub-region (l) ,   although 

/^/v      is small compared to unity,   (say 0.1 or iess),   the flow can 

nevertheless no longer be considered two-dimensional m character. 

By our definition then,   this would be  the  areb  lying below  the  curve 

of   /_»/r      -;;   0„ I in Fi«,   3,    Hecc,   the eircumierentini spreading oi 

i^ss^mmmws^mz^wmmmMm 
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the viscous layer must he considered.    However    the approximation c:»xi be 

made in the boundarv layer equation.-, that r x   y)   ~~^  r   (xk   in which case the 
7 T O 

momentum and energy equations become two-dimensional m form and the 

8 
continuity equation is considerably simplified,     Mangier    has shown that in 

this case a direct transformation of the compressible boundary layer equa- 

tions for axiaiiy-symmetric flow to those of a two-dimensional flow is possi- 

ble when the  gas is perfect with constant specific heats.     Actually although 

this transformation was not expressed formally until 1945,   it had been used 

12 
in essence as far back as 1908 by Boltze      in the treatment of axially- symmetric 

6, 
laminar flows     (for other examples see Goldstein   ), 

Proceeding still further upstream the sub- region (1) is  reached,   where 

the boundary layer thickness begins to approach or become of the order of 

the body radius,   \\\. the  spirit of the foregoing definition of order o! magni- 

tude),   in which case the transverse curvature takes on stitl more importance. 

Here,   we would be concerned with that area in Fig.   3 which lies between the 

curves      /\ 'v     ~   0. 1 and    Z_~i Ir    •    1.    One most, however continue to bear '    o o 

in mind that any treatment valid for this region must actually encompass 

those z-on^r- downstream of it.     The present paper then is primarily concerned 

with the investigation of the compressible laminar boundary layer flow in 

such a region    where    z_i ft      is -'ess than or possibly of the order of unity. 
o 

1,3    Review of Previous Work for lZ^ /r0   Less Than But Not 
Necessarily Small Compared  to IJioty 

A.s far as the present authors know,   all the   so-called Pxact approaches 

to the above  problem have been restricted to incompressible cylindrical 

'M^mM^Mm^^^mm^m^m^^mM^^^^^fh^^mA 



flow.     In this cas«,   the body radius r     is a constant,   and r — r -f-  v, o o 

(see Fig.   i).    The first solution was given by Atkinson and Goldstein 

(Ref.   6.   p.   304) in their investigation of the internal steady incom- 

pressible laminar boundary layer near the entry of a cylindrical pipe. 

Their analysis also included the effect of a self-induced pressure 

gradient due to the growth of the viscous layer in the pips,     A solution 

was obtained by expanding the stream function in an asymptotic  scries 

in ascending powers of    Jx/r     ,   where the coefficients in the series 

v    ."   *sii\j functions of the  variable     ; r     - rQ '] /   fx x 

I " •>7'""" 1 o 

In this manner the problem was  reduced to the solution of a series of 

ordinary differential equations,   the first of which was tt*z nonlinear 

Blasius equation,   while  the remaining ones  were third order     linear, 

inhomogenous equations,     It should be noted at this point,   that this 

technique employed the idea of expanding the physical quantities in 

powers of the transverse curvature  parameter   Z-A ,/r ,  .-_,   Jx/r     . 

WllClilCl      U»     ilUl    i,»HS j t • 1 i :- • •*-'- r   ~ ^ - 'N ~«~ • ~ o ^3   V - r   * l-» ^   ^   l + V, /-> v c   i c   r\f 

course not known,    in any event,   it is clear that the first term repre- 

sents a flow which is two-dimensional  in character,   while  the succeed 

ing terms in the series characterize the effect of the transverse curva- 

ture as well as the self - induced pressure gradient. 

13 
In 1951,   Sebars and Bund       simply extended the  preceding analysis 

to include the "incompressible" energy equation.     In their treatment 

the  problem considered was that of the exterior  steady incompressible 

flow over a cylinder with constant pressure,   that is,   the  seil-induced 
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pressure gradient was taken to be wro,     Th? vai iables used were the same 

as those introduced by Atkinson and Goldstein.     Their calculations  showed 

that the transverse curvature effect increased the  local skin friction co- 

efficient and heat transfer rate,   and that this increase could become appre- 

ciable.     However,   the displacement thickness of the boundary layer is only 

slightly reduced in comparison with that of the flat plate.    Furthermore,   the 

recovery (actor appears to remain unaffected within the probable numerical 

errors.     The   present authors will have mere to say regarding the  signifi- 

cance of these  results at a later point in the paper. 

14 
Sowerby and Cooke     pertermec the same analysis of the momentum 

equation tor the steady incompressible flow uve r a cylinder as did Seban 

and Bond      in addition,   they also treated the analogous non-steady "Rayleigh 

problem" of the  infinite circular cylinder  started impulsively from rest in 

its own plaine.     They found that there is a regime m which the boundary 

layer growth is independent of the  space variable x,   but dependent on the 

time variable t,   so that here x is replaced by t and Z_\/r     "^jk/r     .     As 

one would expect    the solution of this linear problem turns out to be an 

asymptotic expansion in powers of     j t/r       for  the  physical quantities,   such 

as the viscous  shear. 

Finally,   Cooper and 1'ulin    linearized the incompressible boundary 

layer equations of motion m the  cylindrical polar coordinate  system     and 

again determined the  solution to the problem of the  steady flow over a 

cylinder  with no pressure  gradient.     In this  case a general functional 

solution which essentially is valid for ai 1 values of   £~±/r    could be given 



in terms of Bessel functions of zero order.     However    only the asymptotic 

solution for the £S/t     range considered in the present paper was given. 

The fact does not seem to have been noted that their asymptotic expansion 

was in powers of a quantity proportional to the physical transverse curva- 

ture parameter   c\ /r     .     They also found a general  solution to the linear- 

ized problem of the unsteady motion without a pressure gradient,   of a 

cylinder in axial flow which starts from  rest at time t  — O.     Here,   only 

the particular case of the impulsive  start was treated in detail,   with 

analogous  results,   as  pointed out previously,   to the   steady flow problem. 

A general solution for a large class of   pressure gradients on a cylinder 

16 
was also obtained,   although only the  Falkner-Skan    type was treated in 

detail.     Again,   by means of an asymptotic  expansion in a quantity pro- 

portional to   /_A/r     they showed that the transverse curvature effect 

increased the wall shear stress for both favorable and adverse pressure 

•adients.     In the   range 01 £_J / r ),   they found that t.b 

;»^ r-t>* co  ir> wall  shear on the cylinder  for favorable gradients when com- 

pared with the  shear on  the flat plate for the  same  favorable gradient, 

is less than the  increase on the  cylinder  in uniform flow when compared 

with the  Hat plate  in uniform flow.     The converse is true for adverse 

gradients.     The significance of these results will be discussed later  m 

the  oapcr.     For the  case of a constant external velocity gradient over 

the cylinder they showed that similar pi ofiles existed,   and derived the 

ordinary differential equation defining them. 
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1. 4    Plan of the   Present Investigation 

In the present paper a theory is  presented of the transverse curvature 

effect on compressible laminar boundary lay«r flow over bodies of revolu- 

tion.     First,   it is shown that whenever the Prandti number is equal to unity, 

in spite of the transverse curvature effect the Dusemann integral of the 

17 
energy equation     is still valid <<>r an insulated surface with an isoenergetic 

free stream regardless of the pressure gradient..     Furthermore,   it is also 

shown that the Crocco integral of the energy equation      holds for the con- 

stant surface temperature zero pressure gradient cane. 

Next,   for constant specific heal, and a perfect gar? a generalization of 

Mangle r's transformation is considered,   which also alters the x,   y    scale 

to some new scale x,   y in a manner which depend.'; upon the body shape. 

This transformation reduces the boundary layer equations to an almost two- 

dimensional form.     The  additional term which arises in both the momentum 

and energy equation is  shown to have the  same effect as an external favor- 

able pressure  gradient.     On this basis,   results obtained by previous  authors 

are interpreted and discussed,   while me  results that might ue expected from 

the present work  are aiso reviewed. 

The assumption of a linear viscosity-temperature  relationship is then 

19 
made,   so that by means of Howarth's transformation    which is an alteration 

of the  scrle in the direction normal to the body surface,   the equations are 

reduced to an "incompressible form".     For  simplicity the  problem is now 

restricted to the case   of zero pressure gradient,   although the methods 

developed are applicable to a more generai ciass of flows.,     The validity of 



restricting the problem to constant pressure Hows is briefly discussed 

in spite of the fact that the main burden of thia study is left for a forth- 

coming report.    Finally,   the partial differential equations are trans- 

formed to an x ,   Y/7 x    coordinate system,   where here  Y is the stretched 

normal coordinate.     From these equations it follows directly for a particu- 

lar class of bodies sot too- different, from a paraboloid of  revolution,   that 

the  momentum and energy equations reduce to ordinary differential equa- 

tions  In the .'jingle variable     '<)  ^-^ Y/..: :<,     It, is the equation obtained in 
i 

10 
this case for incompressible  flow which is being treated by Mark 

For more general shapes solutions can be obtained by expanding 

all physical quantities in asymptotic series in powers of a quantity pro- 

portional to   «LJj/r    ,   where the coefficients are functions only of the 

variable   >) .     Thus any physical quantity G(x, y) can be written as 
i 

2. 
(2) G(x, y) lo ( ^ ) -f-    J   GL ( y ) -r- j    G2 { y ) 

/here      r    '"^ I \/r     < <   I,   and where G^,   G,(   G-,,   etc. ,   are the V   x'2' 

th zero   "    first,   second,   etc, ,   order approximations  respectively.    In 

particular the velocity and temperature distribution functions are ex- 

panded in this way,   and  the partial differential equations characterizing 

the motion can be  reduced  to a double infinity of ordinary second order 

differential  equations.     \n  Uiis case,   the  zero      order  solution is that 

due to Mangier,   while  the higher order approximations represent the 

corrections arising from the  increased transverse curvature effect 

th over  that introduced in the  zero      approximation, 

l^feg 



The class of bodies considered in the present analysis is of the form 

n bx »      — ax      and    r     - ao'    ,   (a,   b and n are positive constants).     The cylinder 

(n — O) and cone (n   '- 1} are  seen to be  special cases in which the assumption 

of zero pressure gradient is justified    for all Mach numbers for the cylinder, 

and for supersonic flow for the cone.    Although the equations for the other 

body shapes are given,   only these two cases have been solved numerically 

to the point where the  skin friction and heat transfer coefficients are evaluated, 

A 
For both the cone and cylinder  only the first order  or <-.->/r    correction to 

the  Mangier formulation has been obtained,   and then only for  the  case  where 

the  Prandtl number has been taken equal to unity.     Finaily,   the problems 

remaining for future investigation are outlined. 

I.      THEORY 

?.. 1    Boundary Layer Equations for Axial Symmetry and Particular 
Integrals of the Energy Equation for  Pr — 1 

In the present work it is assumed that the  soecific heat and  Prandtl 

i •   - ' »' V   ..   .)    .    f,.     . .•   - -,-,,_>:,-•-.. 1 _ - .. J     < V       4    i X.   ,     _ ,\   ...  tiuikiuL i    cat*-    LUii>bU4it,     t,i*<-    u*:\,y    lUi i. c .a   ex , s-   »il:^*l^t^i^ ,     t^i»v*    bj,ab   i,„s.    c^i-t^.   s_< i~- *~ ^ ._« 

the perfect gas law 

(3) p   =   p RT 

Hiire,   p is the static pressure,    p the mass density,   T the absolute 

temperature,   and  R   the  <?as constant per  pram.     As pointed out previous- 

ly,   the  usual assumption of negligible   longitudinal curvature of the  meridian 

2 
profile.,   that is     5  K,   and      ij     dK ,    small compared to unity  is  still  made, 

dx 

;'   At least idealisticftity within  the u-ja! bounds 1 7 iayer approxim 
lions.     Tins  noir.i. will be considered later in the  paper. 

?> - 



However,   the transverse curvature effect present, in. the axiaily- 

symmetric flow is considered,   so that    a   K? cari be of order unity. 

Following the usual order of magnitude analysis,   the axially- 

symmetric boundary layer equations become: 

equation of continuity, 

momentum equation, 

G 

(5) ,0 I   u —      -f- /   I      dt 

energy equation, 

(6) r 

if      

(A  -?- 

%J oOx. 3jJ 1/     0 u j        '>   ^M     5u 

«* /j 

Here,   u and v are the velocity components in the x and y directions 

respectively,   and   h   — c     T is the enthalpy of the gas where c      is 

ttie  spec.nc  neat at constant pressure.       The  FranUtl nun ibex, 

Pr    -—       co/"<' A"   where    y.  is the coefficient of viscosity,   and k     is 

the coefficient of thermal conductivity of the gas.     !t is to be noted 

that the   static  pressure  across the boundary layer is still found to be 

constant to our order of approximation. 

*  There  is some question regarding the generality of the con- 
tinuity equation in this  form,   however,   so far a.«; the  present paper 
is concerned it is justifiable to write it in this way. 



•   20 

The boundary conditions on the velocity follow from continuity and 

the requirement of no slip at the wnil.     The  temperature may satisfy the 

condition thai there is no heat transfer at the wail,   or the   surface  tempera- 

ture may be  specified.     Therefore at 

y   =:  O i!   s   v    = O 

(7a) 
or 

h   a h       non-insulated ease 

d h    .   O    insulated case 

^t infinite normal distance from the g'.trlace,   or the "edge" of the boundary 

"caver     the   values of u xnd   x   arc  specified,   so that for 

y   r:   fa 'i    "~     u 
' c 

(7b) h  ~ h 

Here,   the  subscript   e    is used to denote the inviscid flow values     so that 

in the case of the cone,   for example,   this would represent the conditions 

on the downstream side of the conical shock.    Of course,   far zero pressure 

gradient all the  inviseid quantities,       u     ,     hfi ,     pe ,   etc...,   are constant. 

If the  Prar.dtl number ol the gas is equal to unity,   then a mosi uiUu uat 

ing result is obtained by multiplying the momentum equation by u and adding 

this product to tiie energy equation,   to give 

i 
\ / 

oi"  a discussion ui   Si!;:>   point se c  5.1,   3SI of Ref.   7 as  an example 
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A particular integral oi   (his equation is !;iv«« immediately b* 

(a) h    *f*      1 / <-• onatant 

17 
This is of course the well known Busemann integral,   which i.s    valid   for 

an isoenergettc free stream and an insulated surface,   regardless of the 

pressure gradient.     It saya that Ibe energy per unit mass in the boundary 

layer  is a constant,   and therefore,   >»i  least in th^ case of Pr — 1.   the 

transverse curvature effects  leave Uv   recovery temperature unchanged. 

This conclusion is true  fur all value}; oS    /_o /r     .   and its significance 

can best be illustrated by noting that the  recovery temperature on an 

insulated needle,   tor  Pr ~ 1,   will be the  same as on any insulated two- 

dimensional airfoil. 

In the case of zero pressure {gradient,   it is further found that 

h     -z.    A   -f     D u        -  1/2    u ' 

is a particular integral of the boundary layer momentum and energy 

equations.    If the boundary conditions of constant surface and tree 

stream temperature are applied l.o the evaluation of the constants  A 

and B,   then the above  relation tan be written a;5, 

W       T    -     Iw +    [ ( ' -j- *~2     Mp ) 
T«J   \ue) 2 

M 

18 

/u\2 

V»eJ 

This integral is the well known •• :;uJt first found by Crocco in connec 

tion with the flow over 3 Hut plate with constant surface temperature. 

Therefore, for Pr .-.-.: 1 ..-.•.• can <•-•;•.•.• hub. fcha' tvi an axially symmetric 

body tor all L^/r _    the iranivers? curvature effect wuli not alter the 



form of the  temperature distribution through the boundary layer from that 

of a flat plate.     In other words    the significance of this  result can be  summar 

ized by noting that,   at least for  Pr   zz. 1,   the Reynolds analogy parameter 

which is proportional to the   ratio of the  surface heat transfer to the  skin 

friction,   will be t.he same on a needle as on a fiat plate. 

2.2.    Reduction of Equations to Almost Two   Dimensional Form and 
Physical Interpretation of Transverse Curvature Terms 

If    Z^ Ir     <.<     1,   then the transverse curvature terms,   f~   ~r—    s;— 

f^l     A—      s—       .   can be neslected in both the momentum and enemy equa- 

tions,   so tha* they then assume the two-dimensional form.     This is tanta- 

mount to replacing  r(x, y) by r   (x),   which,   if carried out in the continuity 

equation reduces it to 

•i- 
/ t0s.   (*,A   -   Q 

With the compressible  axiallv-symmetric boundary layer equations  in the 

8 
above iorm,   Mangier    was able to transform thern to those of a two- 

dimensional flow.     He accomplished this by a change of independent varia- 

bles  governed by the   relations 

/ , _-x 

id •/, 
X h 

'   1 — \ 

» \ 2    M 

v- 
M 

where  L is  a  characteristic  fixed  reference  length.     A. suitable   redefinition 

of the dependent variables was also  required;  the  render is referred to 

Mangier's original   papers. 

In the  present analysis,   because   £j±/r0    may approach the order of 

unity,   ..'  is not possible  to rtjitace  r(x, y) by rDix).   and hence  to reduce 



the axtally-symmetric houndary layer equations to a two-dimensional 

form by Mangier'.<; transformation.     However,   by a simple generalisa- 

tion of this transformation,   the equations can be put into a nearly-two- 

dimensional form. 

Trie transformation of inde nendert? variables from x    y to x, y 

is made by means of the  relations 

(10) rk?Z oi oc c^ 
-v1- 

.L-._.lLJcLi   oi 

Here,   it can be  seen that the ^--coordinate transformation is the same as 

that given by Mangier    but m the change of the  independent variable y, 

r     x)  is  replaced by  r{x, y).     A  geometrical interpretation of the normal 

coordinate transformation follows fro n the fact that 

r(x, y)   dy 1 r  cos cX      dy 

coso< 

~     [transverse viscous area)      seccK 

In other words,   the coordinate  y    is proportional  to the boundary layer 

area in the transverse  plane,   (see Fig.   i),   projected onto a plane normal 

to the  body surface.     On the other hand 

2 
r dx 

o 

so that the coordinate    x    is  proportional to the volume  swept out by the 

bocy.     Now,   the transver.se curvature effects are associated with the 

circumferential  spreading of the viscous layer.     Therefore,   the rate at 



•  14  - 

which Ihe body cir*. itmferente changes with length will be the axialiy- 

symmetric  geometric si factor determining Ihe characteristics of the 

boundary layer.     It is clear  thai the    x     coordinate which is the distorted 

distance along the surface,   essentially characterizes the overall geometry 

of the body    while the    y     coordinate involves the  resultant transverse 

viscous curvature   effect.    Therefore,   it is not surprising that in attempt- 

ing to reduce the equations to a near   two-dimensional form,   the    x     trans- 

formation should be the  same  as giver, by   Mangier.     On the other hand 

Mangier  replaced every point in the boundary layer by the corresponding 

surface point.     Therefore,   the "corresponding" projected viscous area in 

Mangier's case would be only a first approximation to the "proper" value 

oiven above. 

Using Eqs.     10) the following transformation formulae are obtained, 

(II) 

J5L 

*1 L    ty 
•JJ 

'£  i*. I?  »>ot necessary to evaluate    j-Jc.      •    As indicated in Section 1.1 

from the body geometry,   r   —   r   (x)   -f-  y cos 0<   ,   so that 

(a) 'A        - 
6 

—  OUA 
L       6 

1*1 
L 

•+• ^.^52 2L 
a L. 

from which, 

(U)     b) 

and 

6 "«    / 

4- £L 
—r 5 

<w L Coo c< 
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If a new velocity    v     is defined by, 

(13) V %"  t ^1 - 
f • 1 hen   from Eqs.   (11) and (12) the boundary layer equations JEqs.    ,4) - (6) 

become. 

equation of continuity, 

14) p ot. 
Ct~K 

~t- 
d       / —   \ ~~ ( p V j 

Su   \ I 1 
momentum equation, 

'16) 
3I.M. 

54 \ id) •t 
<£b ^L   C«*a 4    £_    / _ ^U \ 

0«£ 

energy equation, 

3 

,16) ,0 /M ;—      f    v 
C X 9 5 

"51 

i       3  /    £fc \ 
•U   ~f~ 

olsx. 

.~~rJ ii,\ ± -_ / O.';  ^ *- i 

compressible flow m the    x ,   y    plane svith velocity components u and 

v     respectively.     The left hand sides of both the  momentum and energy 

equations are  also two-dimensional  in form..     Therefore,   the non-two- 

dimensional  terms on the   right hand side o{ the momentum and energy 

equations must carry  the  burden of the  increased transverse curvature 

effect over that which is obtained using the  Mangier formulation.     For 

simplicity we wtil consider only the additional »hear term in the 

momentum equation in making a qualitative  examination of the  changes 



- lb - 

Lit 

wrought by these terms,   since analogous conclusions will hold for the 

added heat, flux and dissipation terms in the energy equation. 

In  the  present paper,   we  are  concerned with the  c3.se.  where in zero' 

approximation the effect of the added shear term can be neglected,   30 that 

any changes which arise can be considered essentially perturbations in 

/ ../r      on the  Maneler (low.     In this rase,   as will be  shown,   the  added D 

shear term behaves  like a pressure gradient in two-dimensional flow,     For 

the  time  being,   without going very deeply into the  underlying  reasons,   this 

result :'sn be  .»cer. rit .-. s iy  through iwu analogies. 

The first analogue is the so-called "weak interaction" self-induced 

c 
pressure gradient which is generated in hypersonic flow,     as the  result of 

the  interaction of the longitudinal  curvature of the  viscous  layer  with the 

external flow.     In this case the effects produced by the  self-induced pressure 

gradient are essentially perturbations superposed on an already existing uni- 

form flow.     In the  present problem there is an analogous "interaction" of 

the  circumferential  growth of the  viscous layer,   not with any external flow, 

but  rather with the  shear  pattern obtained by considering the effect of the 

rate  of change  of circumference to be  small,   or  even absent.     Thus,   it. is 

a phenomenon perturbed with respect, to the transverse curvature,   /j*/r     , 

making it a purely ' axial"   effect.     The second analogue stems from com- 

parisons  of the additional shear term to the modified effective pressure 

gradient term which arises as a result of transforming the normal coordi- 

19 
iviie in a planar   compressible  How by means ol  Howart.h's      relation,   in 

order to  reduce the equations  to an incompressible form,   (sec   K01.    1,   pp. 

mti^&J^MxMmMM 
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Accepting that the added shear term can be considered to manifest 

itself as a pressure gradient,   then the   results obtained by previous authors 

become clear.    Now,   it must be emphasized that it is not at all neces- 

sary to utilize this pressure gradient analogy to show the direction of 

such general quantities as the skin friction.     This could follow directly 

and perhaps even more  simply {rom considerations of the three-dimen- 

sional nature oi the  problem,   such as the retarding force  per unit area 

when compared with that of a flat plate.     However,   it is used because it 

does show up clearly not only the direction but also the form of many of 

the   results,   at least in the  region where   £>/r       is less than unity.     For ° o 

example,   in the original  iwork on entry flow in a cylinder by Atkinson 

6 
and Goidstem,     it explains why the  self-induced longitudinal pressure 

gradient appears in the equations in exactly the  same manner as the 

* 13 
transverse curvature effect.       In the work of Seban and Bond      on the 

incompressible flow over a cylinder,   it answers  -vh-/  Ihc wall   "'"'ar 

should Li-; ;;.: •:.:.     TKi« follows from the fact that since the transverse 

curvature term is always  positive,   then it behaves  like a favorable 

pressure gradient which would tend to increase  the   skin friction co- 

6 
efficient..       A favorable gradient will also increase the heat transfer 

21, 22, 23 
coefficient ,   but as is well  known from planar calculations 

''This  same  property shows up from work by the  present 
authc-T::,^1'  ;m the  self-induced  pressure  gradient generated  in the 
hypersonic viscous flow over a corn.-. 

Ifflm 
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2 i   2 3 
the change   in  recovery factor is small .     As one  might expect    these 

same  results were obtained by Seban mid Bond iri their calculations.     The 

smallness of the numerical change  in recovery factor  suggests that actually 

the change   might be  due  to additive numerical errors,   whereas  mathe- 

matically the  change is in fart aeio.     This was shown by Probstem and Lees 

for the  pressure gradient generated hy -.he hypersonic  induced effect over 

a flat plate  in the weak-interaction region.     Finally,   the fact that they 

found the boundary layer displacement thickness  to be only slightly reduced 

in comparison with the flat plate value is a result which is also to be ex- 

pected.     'This implies that roost of the changes  in velocity must therefore 

occur  relatt   ely close to the cylinder, 

15 
Turning to the work of Cooper and Tulin     it now is clear why they 

lound that the  increase  in wall  shear on the cylinder  for favorable  gradients, 

when compared with the  shear  on the  flat plate  for  the  same favorable 

grcidient,   is  less than the  iricreast  on the cylinder  in uniform flow when 

compared with the flat plate  in uniform flow.     The converse is true for 

adverse   gradients.     In other words,   what their  results  say.   (see  Fig.   4, 

Ref.   1'J),   is that for a given value of     t -*/*"„  > 

24 

i   i c v 1.   t a v.   v> r a d.   \ 
\ /   f \ 

;ame  adv .   g rad, \ 
"Ccvl. y i.   a civ.   grad, J\    I f-p same fav.   grad. I    ' 

But,   the  wall  shear  for   planar   flow wit.h an adverse  gradient is  less  than 

the wall  shear with  -i favorable gradient.    Since the product shown above 

must be  greater   than unity,   it follows  that at a  given  value  of   L ./r .   ,   th« 

vail  shear  oi. tht  < ylinder in ;i  favorable  gradient is greater than the 
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wall shear for a cylinder in an adverse gradient.     Certainly,   this re 

suit is obvious although it was not explicitly pointed out in Ret.   15; 

L U>r> G<     ^ 
/  u that is       -dp   and ;    —   ( M V )     add when the gradient is 

favorable and subtract when the gradient ts adverse.     This interesting 

problem of the "interaction" of the pressure gradient term with the 

trans -erse curvature shear term which manifests itself like a favor- 

able   pressure  gradient,   is  reserved for a forthcoming paper. 

Additional conclusions  which can be drawn about the  present work once 

it is  recognized that the added  shear term behaves like a pressure 

gradient,   will be  reserved until the equations are obtained in the form 

m which they will be  solved. 

2. 3    The Incompressible  Plane and Similarity Considerations 

The boundary Layer equations now being in a nearly-two- 

dimensional  form,   suggest fir^t a transformation from the  com- 

pressible to an incompressible form.     However     before attempting 

to do this two assumptions  are  made; the  first is  that the viscosity 

varies linearly with th«   temperature,   while the  second one is that 

the   pressute  gradient is taken to be  zero. 

l-ollowmg Chapman     a  parameter    C ^    i: itroduced     such that 

Since  the  Prandli number and specific ho at are constant,   the  heat 

tCjiriir'iw  "oeffi   ient. vanes in the same  manier     ... the coefficient 
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of viscosity,   that is 

/ 
Me 

The constant    C      can be determined by matching the viscosity relation 

lb with the theoretically determined value 'e.g.   Hirschfeider et al     ) at 

the  wail  temperature,   so that 

r - e 

I Te./! 

When a semi-empirieal  relation  such as Sutherland's equation is 

employed,   then 

and 

( 

±   ( T   -r ) 
• y 

ifX , Te) 
T-, \ 

w finds thai     O   *^     C       $    I,       A'-  ^"mterl out 

by Chapman and Rube sin       the above  relation retains the advantages of 

the  linear form while  allowing for  greater accuracy in the  impottant 

region of the boundary layer  flow near  the  surface  rather  than near  the 

free   stream. 

idealistica!  y oi course  the condition of zero pressure gradient 

SO that    p  nn constant  ~ p     .    i«  only  realized   in  tv.'O cases;  a cylmdei 

with its geneiators  parallel  to the  fl«w,   Arid an unyawed cone in super- 

sonic   flow.     In the c^se  ol  a ^yiindcr,   there  if. conside rab'e complica- 

Theoreiic allv however,   one can vtsuali?,c a case »inf i.pr  nea r  t..e  iiOai 

in which suction through the  interim' of the  ryUnder tr.akef th< 



stagnate n stream surfaces coincide with the cylinder surface.     This  is 

supposed possible even m supersonic flow when there is a detached 

shock wave   in front ot' the  cylinder.     The  boundary layer  is  then  supposed 

to h=>ve  zero thickness  at    x " O.     Of coarse,   as pointed out in the  in- 

troduction,   the overall flow problem is to be treated in such a way 

that al    possible   information about the nature of the How downstream 

of the "immediate'' nose  region is obtained,   which does not depend on 

the  detailed history of the  flow in this  region. 

It is well known for  a cone  in  supe   sonic  flow with an attached 

shock wave,   that the  values of  all physical  quantities are  constant 

along the cone  surface.     As has already been  pointed out however, 

other effects might arise  from the  propagation of the immediate nose 

influence downstream,   or possibly from a self-induced pressure 

gradient.     These and other  phenomena which have not already been 

OnSf.Ci': l evi   ;u c;   i i ,_> I   1-ciK.CO   111 tO   ctCCOUnt      Lilm   i.i"-1.1   inust   o c born-   in  mli. 

when comparing the results of the  present investigation with experi 

mental data. 

Foi   ail other body shapes  and flow conditions     the   pressure 

gradient is not zero.     Actually however     for certain body shapes 

and flight speeds  the  contribution of the  pressure gradient might be 

of  a higher  order  than the transverse  curvature  effect.     Therefore 

o».;«.' the body  shape  is known it may be  possible  to dete   mine the 

order  '-•;  the pressure gradient in comparison with the ^rdc-r of 

The  investigation of th»i>  firohlem will :dso   )<-   reserved 

!  ,r  h   ;ort**K omirsfi  oa pe r . 

INP1 "t^mmimmmmw-'imm^m 
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fn order to transform the  modified boundary layer equations 

1 Eqs.   '14)-'16)       to an iijcomprcfsibte form Howarth's t,ransf»vma- 

19 
tion      is used.     ft. is defined by the change oi  independent variables 

x,   y   to x      Y where 

(17a) 
V 

I 

so that 

(17b) 

A ) 
•JI -      / Y 

It    JL 

4- *r - 
o ?c     d Y 

As  it turns out,   it is  more convenient to use the  stream function 

\b as the  dependent variable.     It is defined from the equation of con- 

tinuity     I Eq.    '4)        which is  satisfied immediately by writing 

\iO) 
•4-—   v 11      —       —J— 

Pc "t 
i - v  s= 

3 ,«_ 

Since  the  present paper is concerned with a two-dimensional analogue, 

it is more appropriate to let 

By mey.ns oi Eqs.     17) and (18) the  transformation of the boundary 

layer  momentum and energy equations to the  almost two-dimensional 

incompressible    x-Y    plane gives for the  momentum equation., 
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(19) 

,}Ji 
••)   ,       riX    a 

ha.  £a §.       LiF   IZ2.a/V 

and ("or the energy equation 

'20] 

- f   ^  / 

d   f'iA   f-°- 

zs 
11 ingworth       has examined the  problem of  the conditions under 

which  similar velocity  and temperature  distributions  for different 

values of   x   can bo lound 1" compressible  planar  flow.    He concluded 

that such solutions only exist if the external velocity is constant,   and 

then as m incompressible flow the  similarity variable  is oi   the form 

y/ J x  ,    Since to the approximation of Mangier the axialiy-symmetric 

compressible  boundary layer  equations can be  put into a two-dimensional 

form,   then it would appear  logical to seek  solutions in a variable pro- 

portional to   y/   Jx .      1 nat is,   the  iviangie.-   result woulu  (jiuviJc   M.C 

so-called zero"    order  solution for  the  present analysis.    However, 

even to the  ( t)Oi iximation o!   Mangier,   although the  velocity and tempera- 

ture distriout'ona aie derivable from ordinary differential equations, 

these  distributions are  not. similar  in the  sirlct sense.       t would 

nevertheless  also be  interesting  to determine  under what conditions 

if any,   "pseudosimilar"   profiles might be obtained without any 

d D'jroxi ma cion s  in the boundary  layer  equations other  'han those  al - 

rtady  made,     ii a similarity variable   >')   I .- dc.finea 
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(21a) 
/ 

i 

/U 
\   / '/, 

then the transformation equations arc given by 

(2 lb) 
!)5/y 1 V*M 

3_ 

i2?    Jl 

#'V7 
/ 

From t»i€ above  relations the momentum and energy equations 

i Eqs,   (19) and (20)1     become respectively, 

HZ)     9,«y)    Jx ?V) di<     «fv ! 
f'M     »X   CV1 7 a x i # *^ /      v 

i / 

X      /     a -V) +., n z VVV1 

«     •  ! 

and 

(23) 
3 Ti    3 x ? 

C,Vg «e 

7"' 
/•> A.    -      1 1^*7 1*77 

-r i •<• ,-       ^|_^ 

T-   .     /        /  ^ e   \ (\ us •^ T    . ~r d •AY) 

J 

With the equations  in this form we  may now  inquire as to the  con- 

dition for  the  existence of "similar"  profiles     or  more  correctly 

the   requirement for the  reduction of these  partial differential equa- 

tions to o.dmary differential equations. 

In genera!  one  can write, 

s'A r 

(24a) 

and 

<y      - L   (%Jye "*}     -' X T ( *, V ) 
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24b) 
-rr-     -    X ( -x. , 'H ) 

f ' 

However if it is assumed that  say,     f    and   /,   are functions  of     Y; 

alone,   then on substitution  of the above  relations both the momentum 

and energy equations  should involve only the  independent variable   ">H   . 

If this is done,   f.he  left hand  sides of both Eos.   '?.Z) and (23) are In fact 

found  to be dependent only upon   T/   .   but the   right hand  sides  involve s 

function oi  '•>')   multiplied by a function of   x  .    Therefore    for pseudo- 

similarity  to exist, the  body  must   have  a  shape   such that this function 

of x,   given by 

\ (- ye L COr> •••>'.    J * 
.</, 

is  a constant.     Since  s irt«( -.  drr    ,   then the  criterion for the body 

shape  is the  following ordinary integro-differenttal equation in r   . 

'   J   J 

10 

ordinary differential equation  lor the  velocity distribution in incom- 

pressible  flow which results when the  above  relation is identically 

satisfied.       Mere,   no approximations  regarding the order of L~./r 
o 

have bee", made,    so that the  ordinary differential equations which 

result are  valid for Loth the  nose and downstream  regions.     The  re 

lation describing Lhr   body 3hape  ib non-linear  and no integral  of it 

•5><..e   R14,     in) with    C   — con.stant    ?»,nd on s;,jr:f. 

8^^^^^S^^^^^^^P^^§ 
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has been found.    If however,   the body is assumed sufficiently sl-ende." 

so that        a( and higher order terms can be neglected, 

then the equation becomes 

f 

] 
'o   C^'-C   -— constant   *»-, 

This can be integrated immediately to give    r    =.  constant   v'  x.     To the 

order of approximation being considered,   this is the equation ol a 

paraboloid.     This same   result, cap. be obtained by assuming at the outset. 

that the boundai y layer equations can be written, in the cylindrical polar 

lortrs used in analyzing  the  flow over a cylinder. 

Returning to the general case,     t    and  A arc  functions of the  two 

variables    x      and   T) \.s noted already in  p reat detail,   in the   present 
( 

paper we are concerned primarily with the downstream  region where 

A, 
/.', / r      is  iess than or  possibly of the order of unity.     Logically there- 

o 

fore,   in order to  solec   these non-linear  partial differential equations in 

such a region both    f    and  A   could be expanded in asymptotic  series in 

A      , 
powers of a parameter    \   ''N— l i / *'G    •   wlmv   L re: .. ; .-,„ + , 

functions of T)   alone and   ;"    is  small in comparison to unity,     see Eq. 

(2) ).     The  natural  coordinate  system for these  equations would there- 

to lore be   C   ana   '~f\  .    In the Mangier region,   which is alter all a part of 

the downstream  region.,   one  finds   thut the boundary layer  thickness  on 

bodies of  revolution under  zero pressure  gradient is  given by. 

"••As noted in a fo.d.note  m Se< t, 
\or  the  regions being considered. 

the approximation is excellent 
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8  "v 

Therefore a parameter 

r 

P     aw 

%* 
*.*•*£% 

'/i. 

Mum bO*^    \ 

/• 

< »hg | 
l* 

is chosen,   which when properly non-dimensionalized is given by 

(25) 7 -"* 
Lc^s( J£ 

*/* 

By making a final transformation of coordinates from   x , ^    to    £   , TO 

the  momentum and energy equations become  respectively, 

. .. cfUL *#if J± i± ^ if gf7_ i xaaf     ||   ifirS fid 1 

and 

(27) 

1 /££ 

/ / 

where 

(m A   s       t 
•V- 

f'-vjj •#J 

- / f 

If; riuiftt be emphasized  that within the boarioary layer approximations 

'.he.se equations sre valid for all  values of <Ui /r 

Of  interest is the fact that when 

o 

r=:  constant    the im- 

plication  i'rvrr: either  tr>-  •••. «yir>nWMMs:  f vp« n ?> ions or  fhe jOTegom^ 



-   \8  - 

equations is that   f   and   A   are functions of   f\  alone.     Bat J*   ~~ constant 

is just the  integro-differentiai   equation describing the "near  paraboloid" 

which was found previously as  the criterion for the reduction to ordinary 

differential equations.     In other words,   when the boundary layer thick- 

ness goes like the body radius  similarity in  its restricted meaning is 

possible. 

2. 4   Summary of Mathematical Development 

At this point,   it seems  suitable to sum up the transformations and 

assumptions that have been made.     Thus for a pertect gas with constant 

specific  heat and  Prandti number,   under the assumptions of a linear 

viscosity-temperature law and zero pressure  gradient,   a transforma- 

tion of coordinates has been made from x,   y to    f    ,   >7    v.he.re 

u. 
CAT)  oL     1    j   ^ o   ^KJL_ 

5    f   r- ' A 

vH) = / /ceve aw    J / « ^ 

The transformation eauations are  eiven by 

_2_ dj      5. ^55     j£~ 
5*     3^ 

/   -U, /O'A 

^M ,/ C 
(   J 

*"«/ 

£^. 
wise re  in th> s case  it is not necessary to evaluate       $x 

A. stream function d^ which satisfies the equation of continuity 

identically.   );, ueiinfu by 
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BiwKwumaaifPiwMmnBtfiTi ymrnwi 

f- ./u , hkL 
p« 0 uj 

0 

Writing 

lives 
AX 

and 

The static temperature ratio which is also a function of  J   and   *   is 

wi itten 

i o X(t^) 

The partial differ-:ntia! equations defining f( * , **] ) and A ( 5. ^ ) 

valid for ail values of £~\/rc, within ths boundary Uyer approximations 

^re gt 'en by Eqs.   {lb) and (27). 

3' SOLUTION OF EQUATIONS 

3.1    Asymptotic Expansions,   Boundary Conditions,   and Zero 
Order Equations 

th 

As noted nreviouslv,     f    and   A   are to be expanded in asymptotic 

series in powers of the parameter   «f    .   v/fcnre the coefficients are 

functions of  ~>0  alone,   that is 

•29a) i(l-yj) « i(vj) + ?-f,^)r fV>fy)* 

!>0 
r 
)   F3f/>;) 

,.    !    0 
7 

and 

(29b)     A(f/^)    - A./^)   r   f\(*j) I   F^./^jf  •        •-    *   /,   r   ^ty) 

ere .   the < ol  orccr umry     -irct t»;-." (-xn-sn-'-'ur,  iv-» ramet.t. r 
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X   is assumed to be  small in comparison to unity.     It will be  seen,   that 

the coefficients    f   and    A       for     j   ^    I,   will be functions of in  alone 
J J ' 

only so lon?
_; as the body shapes which are considered fall into certain 

prescribed classes.    It is of course these prescribed shapes with which 

the present paper is concerned. 

The boundary conditions fu»low frop- Eqs.   ^7a) and  '?b) as 

(30a) 

and 

f.(O)  »  f.(O)   = 
J j 

=  o ror j >o 

f  (oO)»l       ,       f (O0)=0    for j   >   1 

(30b) A ;o)~ X 

Aj    (O) = c 

A  '.O)  - 
J' 

- O j  ^ 1       non-insulated 
boundary 

j^"0 insulated boundary 

'o I ^  (ex>)    •»    o for       j ^  1     bch cases 

Substituting the asymptotic expansions into i£qs.   .'26) and (27)    and 

t4uau..5 L^ scrs a .'.I t"'-'-"'-- «*ifch the same oower of   Jf   ,   a double infinity 

o!  ordinary differential equations is obtained.     All these equations ex- 

th 
cept ior the   zero        order  momentum equation,   are  found to be  linear. 

In the  present paper,   only th^  zero        and first Older equations are  con- 

sidered,   but the   methods of  solution car. be  extended to higher orders 

if necessary. 

th 
In zero        order,   the  momentum equation is given by 

•7 

(31.) 5f 
ill 

% u   - u 

~< 
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with boundary conditions    f   'Ol ~  f   ' G) «  O ,   ?nd f.   {«* ) s»  1.     This 

is of course the well known Blasius equation,   the  solution of which 

29 
rnay be found tabulated by Howart.h,       as welt as in other standard 

works.    It is to be noted that to this order the Blasius equation des- 

cribes the flow for all bodies,   and the  shape does not enter the prob- 

lem except as it is prescribed ;n the coordinate transformation which 

in this  approximation is  given by   Mangier,     Of  course,   such a   result 

is to be expected since it has been assumed that the pressure gradient 

«s zer o. 

th For the energy equation,   the  zero        order  relation  • •-  given by 

with the boundary conditions      A      O)  =    A for  heat transfer  or 

A     O) — O    with in insulated wall     and    A „   oo )    —   1,     For  Pr  —  1 

the complete analytic  solution of the energy equation has already 

r       i    ...„,..,            , 
L.C en given  j .t*q.   {*f) j   .   wmi€  IUI   r- r -*-   *. uic  uumci^ai  juiuviwu *:^2 

been tabulated by Croceo       for various values of the   Prandtl number. 

i.?.    First Order Equations and Admissable Body Classes 

On carrying out the  prescribed  substitution of the  asymptotic 

expansions,   the ft'si order momentum equation is found to be 

I'" 
• ••>£•) • i H l* -(i - X)i'f! + 0 - *)0.' -3 Ky.)' 
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wh«re "f)G   —      j \^\y\}^'/\ ,   and where the boundary conditions are 

M(O) -•   f',(0)   •   i.   \rO) — O.     Oi course,   &6   which is defined by Eq.   \l'A) 

must be equal to a constant in order that f,~   !. ' 17),   and it is this 

condition which prescribes the allowable body shapes in the  present 

analysis,     Igam however,   the resultant integro-differential equation 

cannot be integrated except when    rn =  O   which corresponds  to the 

cone and cylinder,   unless we hrmt ourselves to sufficiently slender 

bodies.     Far the  sharp nosed slender bodies being considered,   the 

2 
slope cX  can be   supposed  small  so that terms of order     ex. and 

higher  might be  neglected,   and 

so tnat 

to J.'i.j approximation.     The  'ergitnd-n.^l r»rvptare    K,    «.s oiven hy 

*       =    iL         -y       <" 

Note that the  indicated differentiation is with respect to distance along 

the   surface,   and not along the axis.     If    K,    is  considered  to be  sufficient- 

ly small,   then  'r     /l-r     ) \.<i  small when compared with 2.frQ    and can 

be neglected,   so that the equation  5<   — constant reduces to 

',y(       'y         -J.-— ^z. constant. 
^ 3 

As  noted  previously,   in. the  case of the cone and  cylinder  the   above 

relation is exai t.     integration of  this equation gives two mathematically 
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n   • 
admissahle classes of body shapes.     The first ;s    r     ~    a *     ,n i •1/2), 

w here the value of  ^n    is given by     <*v    ~ 
elrt\ 

&SA + 
in 1 e ce nd e n 1.1 y of a. 

Since    r.    must.be finite at the origin    then    n   ^ O.     One might note, 

that for the cylinder and cone, ^t  =• O,   and <£/3 respectively.        The 

second class of bodies is    r     ~    a e   '"'    which corresponds to iv s&   1 

for all values of    a    and   h.     in any event    the exponentially  shaped open 

nosed bodies of revolution have doubtful  applicability to aerodynamic 

problems,   particularly under  the assumption of zero pressure gradient. 

Nevertheless,   as will be  shown by analogy with the two-dimensional 

flow with pressure gradient,   there  is some question as to whether 

negative values of   b   even admit, a solution to the problem. 

The equation in   ti   i Eq.     .'}<£)       with different right hand sides, 

29 has occurred previously in the  analysis of Howarth       on the problem 

of an  incompressible boundary layer m two-dimensional flow under 

linear pressure gradient.     The equations    f    ,   f fr 8 

occurring in Howartn's case  correspond lo values oi 

c<'.   ~   -l/Z  .     -3/2        -5/2,   ..,..,   -15/2 respectively.     This mathe- 

matical similarity bears out the previous  ideas  regarding  the  fact that 

the transverse curvature effect manifests  itself in a manner  similar 

to a pressure gradient in a two-dimensional flow.     If the analogy  is 

carried  further,   it is  immediately evident whv the body shapes which 

bx 
were  found,   wer<   ci  the form    r ax"     and    r    —   ae "    .     Thi. 

follows from the fact that \n the present problem the body  radius, 

r    .-:!,   replaces the external velocity.    n_ x).   of the two-dimensional o      '        • e 
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31 
incompressible   pressure gradient problem  sol   rd by Goldstein. 

H-.:  tried to determine the external  velocity distributions which would 

give  similar profiles.     The only adrmssable solutions for the velocity 

were  those found above for    r0 ,   and furthermore in the exponer)tial 

case Goldstein felt that   b    had to be  positive.     This was verified 

shortly afterwards by Hardy. 

Assuming the shapes to be such that ^v ~ constant, then Eq. (32) 

is a third order linear ordinary differential equation in f. . The 

homogeneous equation is however only a perfect differential in the 

case of <?/v ~- I, which corresponds to the exponential body shape. 

For all other values of d\ , the equation has to be integrated by 

numerical methods, although it is possible to reduce its order by 

wn ting 

(33) fl    °?  > =  t«(7J nu       g { •y ,   ---••  G( ^ ) 

By use of the Blasius relation for    frt    the equation in    f,    is then 

reduced to the following second order hrear equation in G: 

'34) £5" * w:•>• jrf,f:)&'+ [ +;-<*-*)+;*]& •-Kf:<y.)' 

This equation can be numerically integrated once the value of   &L 

has been  selected.     Integrations have  been carried out for  G li- 

the cases whei e d£ —   O and l/'i,   which correspond to the cylinder 

and cone   respectively.     The detailed methodology used will be  pre 

sen ted in u forthcoming paper. 
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(35) 

The first order energy equation is given by 

fV 

*-*:(t-*)f,-i(r-i)tif:f'-jb&v)'-w-)tiy.* 
ii x~ 

where <K   and   *V/fl   are as defined  previously.    The  boundary conditions 

are that   A ,'xO)    ~  O   for the case of heat transfer.    :r   A,   O)  "• O   for 

the insulated wall,   while    X/ <^o)   ~ O.      For    Pr   —   1 the  solution is 

known,   but for    Pr  ^   I    the equation must be  integrated numerically 

by rnethods similar to those used in determining   G ( •Yj ). 

],3   Some Numerical Results for the Cone and Cylinder 
folrHpr"^! ~ 

One of tne primary quantities of interest is the wall shear,   or 

skin friction coefficient    Cr   which is defined by, 

T 

7°' -u, 

If the appropriate asymptotic exptu«»iui« \a .substitute; 

to reduce to 

««  l->f   Q Hoivn 

(36) - , F.s   f0   -      S    rf 3 f^ 

Ci equal importance is the local heat transfer  rate  which is 

defined by 

/ 
Q 

'   'V 
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In the case of    Pr — 1,     Irum the  particular integral oi the  energy equa- 

tion given by    Eq .   (9) it is simple to show that the loc.a' heat transfer 

rate is directly related to the  skin friction coefficient   Reynolds analogy) 

by the tollowing  relation 

(37a) t    " V i c?re ,c I o    *-* 9   I 
-x~ 

-r- 

However,   in general when    Pr   ^   I then 

—    r~ 

(37b) 
% 

m   ~  z4-   pe 
lt 

"v 

oo 

^ ] •• 

To simplify the numerical work the   PranriU  number is taken equal 

to unity since in that case,   the  Reynolds analogy parameter is constant 

and only the wall  shear calculation ne»d be carried out.    furthermore, 

only the first order correction       T     or     j =• 1) is examined..     The body 

shapes investigated were  the cone anu cylinder,   wiuch max afti* all *l"> 

,,I,PT-„ th» asuiimption of zero pressure gradient can be theo- 

retically justified.. 

For both the cone and the cylinder the results are presented as the 

ratio of the skin friction obtained by considering the transverse curva- 

ture effects  not taken  into account by Mangier,   to "the skin friction 

which one  would  yet using the   iV'angier fortnul.-ition.     The calculated 
* 

values were obtained by  the  r,ume r icnl integration of Eq..   (34),   which 

gives for the cone 

(38) 
„i 

-+-   f 'O-S/7    f 0 VSAW  i C   mi(l '>)^s\r. 
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where       f 

T~v. 
, __r__     __    /—~—.-       anc4 t).^ subscript   e    represents the tn- 

viscid values downstream of the conical shock.    Strictly speaking of 

course,   the cone  solution should only be valid I'or .supersonic flow 

with an attached shock however,   in Fig.   4 which is a graph of Eq.   {33} 

for   If    =- 1.4 ,   the values are carried down to   If  ** O   for continuity 

purposes.    For the cylinder the first order equation governing the in- 

crease m wall  shear is 

Cf z.1 
-    j  +   ffflftft   *' *&**» f 0-n3t*->)MZj f- 

p        X 
where       C * • v    i_|—- (   an<j t-r,e subscript   e   denotes values m the 

undisturbed free  stream far from the body,    A piot of Eq,   ''39) fcr 

E interest to note,   tha *\t     m 1. 4 is given irt Fig.   5 and it is of interest to note,   that the 

* - *  s-, 

for value of the ordir.ate parameter 

A 

2.12 given by Seban and Bond, 

Z^- 
/T 

*M 

ss.   1   and    M   —   O   is 2.091 which compares with the value of 
we r 

k rorn r lgs.   t and o ix can be seen i'aiii, below  a I*s*u h i.ai'iiiiei   oX 

about "3 the increase in skin friction coefficient on both the cone and 

cylinder for  the heat transfer case is practically indeperiderjt of the 

Mach number,   although the dependency becomes significant around 

M    rs 5,   and increasingly impo rtant for all higher  Mach niniberb. 

This is simply the manifestaticr. of the increase m viscous dissipa- 

tion associated with the higher  flight speeds.     If, is also <;. Jear both 

from Figs,   4 and 5.   and Eqz.   ' ;-B) and    '-'.0    flat the  skin  fpsi"uug| m 

larger a* H cor'=*ar-!    '?     1 he   hn-hor  the  r:»tio 0f '-vat    t:  (rev*   scressn! 
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temperature.    Since   jj    is proportional to u fr    .   its constancy implies 

a constant value of the transverse curvature  parameter.    Finally,   from 

Eqs.   (38) and ,39) it follows that for the same  surface temperature ratio 

and Mach number on the cone and cylinder,   at a constant value of the 

transverse   curvature parameter,   the  skin friction in. rnase will he larger 

on the cylinder than on the cone. 

One of the more important re suits obtained from the calculation is 

the approximate  range of validity of the  solution.     As was noted m Section 

1,2 the ordinate of Fig.   3   when divided by   4   ?*     represents   ^    for both 

the cone and cylinder.     The-:,   if iht-     itnr.e where   \    is small compared 

to umtv is considered then for    ( M /r   )     ~ 1,     0. 7 5-,   and 0. f* we have, o jyt 

by way of  example,   at   M£~  4   that   £     .s   0.107,   0.081.   and 0.053 

respectively.     In the case of the insulated cone this gives values of 

(cf    -    Of   )/c{       —    0. 'in,   0, 42,   and 0.28 respectively.     It would seem 
ivl        iVl 

that in this case for   lP^/t      ""-   1    the change in    <j>   is somewhat too 

large to be given accurately by only the first term in the expansion. 

Nevertheless,   what is clear is that for   ^    less than about 0.1,     some- 

what less  for the cylinder},   which torresponds fo Z-Ji/r       in the  range 

less than or of the order of unity,   the present formulation would appear 

to be valid.    It has already befjn shown that this region is  in a practical 

ranqe of interest.     Therefore,   for  clx /r     S^ 1    the  increase in skin 

friction ovei  what Mangier predicts can become  important,   and this 

change can be dete i mi.Vitd by the forniuiation given in the  present 

paper..     Os  course  for    FT   S   1    the   ioca.)  heat fra.n:;(i-r   rale  UB direct'y 

m^^s^^ms^m^m^m^mm^^^m^m^^mm^m^^^m^^^^sim^m^^mm^m^Sf^^^m 
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proportional to the skin friction,   and is given by Eq.   '37a).    A final 

result which should be noted is that the displacement thickness for 

both the cone and cylinder is decreased from the Mangier value,  but 

only slightly as expected. 

FUTURE: INVESTIGATIONS 

One of the main problems lor future investigation is a study of 

pressurt- gradients in axially-symmetne flow and their   "interaction" 

with the transverse curvature phenomena.     A study which would in- 

clude both the hypersonic  self-induced pressure gradient effect in 

addition to the transverse curvature effect would also be of consider- 

able interest. 

An investigation of the conditions under which the assumption 

of zero pressure gradient is justified is certainly required.     It might 

he possible to determine this for the given body shape and flight 

speed by making a comparison of the order of the pressure gradient 

with the order of   /Lj/r o 

Since the calculations in the present paper have only been 

carried out to first order,   it would be worthwhile to evaluate the 

I       contrsbutions to increase the accuracy of the  rcsul's    and to 

t-stabiish more closely the range of validity of the present solutions. 

In addition,   some numc-ieaJ mie^ rations of the energy etjuauc.i   for 

Prandtl numbers d-'.ff^rpui from unity are needed,   in ordfi   io deter- 

Mfj'Mfi  the etfi'r4. on the  fa&'mi  Irr.iii-fe.»   rate and recovery  ($®?f.ai       For 

••.--••«•• c f al  '.-:iiPs f. '•••'Ch* St   v»->':^-!.hif  i'.i ?xanu"c   the   < ec<-< . ••• >' -/  FftvUlE 

.  tr-.j'V'.-  <*f- '>! v tit <u i i « 
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in ths* present investigation a linear viscosity-temperature  relation 

has been assumed,   so th*t to check its accuracy som« calculations should 

be rnado tn which a more realistic  relation is utilized. 
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CONCLUSIONS 

i.     The viscous transverse curvature effect m axi ally-symmetric 

flow is characterized by the parameter L2\/?    ,   where  L\ is the pro- 

jection of the boundary layer thickness or more precisely the displace- 

ment thickness onto the transverse plane,   and    r0    is the distance from 

any poinl  on the body to the axis of symmetry. 

?..     There are  two mam asymptotic flow regions,   which for a 

pointed body of revolution,   wh«M~e the  radius increases with axial dis- 

tance,   can be represented by i,   a "nose"  region distinguished by the 

fact that  Zl / r    >>   1,   and I).,   a "downst ream"  region where  Ll /rQ   is 

of tht: order of,   or less than unity.     'The two regions are  separated by 

n  "transition'1  7,0ns where £\ .'r      is intermediate  between these values. o 

"5.     The nosi   region is characterized by the fact that the  stress 

term arising from the   transverse curvature becomes of the  same 

order of magnitude  as the  usual viscous stress term in  LLC   tiioinci/ium 

»n.i-tir\r>       TV.p downstream  reeson is characterized bv the fact that 

the  effects  produced by the transverse  curvature can be considered 

to be essentially a perturbation of a flow which,   in the limit cf  c.\/rQ 

very much less than unity,   approaches a two-dimensional pattern. 

4.     The downstream domain is divided into three sub-regions 

each one of which i« a limiting case of the other.     The first is where 

t/\/r       js  very much Iras than unity <*rid the effect of the  axial- 

symmetry is negligible and the flow approaches a  two-dimensional 

'.   ?    ki-..J:   1; r- u < -:' 
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transition to turbulent flow took place.    The second, sub-region is where 

<L^/f      is small compared to unity,   (say 0.1 or less),   and this is where 

Mangler's formulation,   which takes into account the transverse curvature 

effect only approximately,   is valid.     The third  sub-region if. where ihe 

boundary laye*   thickness begins to approach or become of the order of 

the body radius. 

5. The Busemann integral of the two-dimensional energy equation 

for  Prandtl number unity and an insulated surface,   with an i soene rgetic 

free:  stream and arbitrary pressure gradient    is  valid under the  same 

conditions for axially-symmetric flow,   m which the transverse curva- 

ture effects are considered.     The Croc^o integral of the two-dimensional 

energy equation is also shown to hold for the constant surface tempera- 

ture,   aero pressure gradient case with Prandtl number unity, 

6. By means of the coordinate transformation 

)      L 
and t±*>$L 

u 0*M 

which generalizes Mangier'? transformation,   the boundary layer 

equations are reducible to an almost two-dimensional form.        Here 

r(x, y) is the distance from any point in the boundary layer  tc the axis 

of symmetry,   and ,L is  a characteristic  reference length. 

7.     The  additional term which arises in both the momentum and 

energy equations ac a result oi the  Iran-*verse curvature,   has the 

sarrn-; effef t .ss dn external favorable pressure gradient,   at least in 
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the re«ion where Z„".i/r„    is less  than,   or oi the Older of unity.     On 

this basis results obtained by previous authors can be  interpreted. 

8.     For a "near paraboloid",   with the axial pressure gradient 

assumed to be zero,   without making any approximations in the 

boundary layer equations ' 'similar"  profile a can be obtained,     li^ri?, 

similar is used, in the  restricted meaning that the velocity and 

temperature distributions are dern/abb'  from ordinary differential 

equations, 

9-     Within the region where  LZ>/r      is less than or of the order 

of unity,   solutions of the axially- .symmetric boundary layer equations 

for zero pressure gradient and- body shapes where    j:aw,axri     or 

bx r,. ~ ac can be obtained as asymptotic  series for the velccitv and 

.     Here,,    £ 

is small in comparison to unity    and is proportional to  ti/p.   .     The 

fk zero   " approximation is the Mangier  result. 

10       Thp first, order correction to the  Manpler  formulation for 

Pr — 1 shows,   that at. least m the cjse oi the cone and cylinder,   the 

effect or. both the skin friction coefficient ana heat transfer  rate can 

become appreciable in the  range where c—^/r0   is less than or of the 

order of unity.    At, a constant/_i /r     ,   the effects are increased in 

magnitude when either the ratio o>' wail to free stream temperature, 

or Ivlach number,   is increased.     Also,   all other condinons being 

equal,   for the  same  value of /\ /rQ    the  skin friction cov-ff ic tent 

and hence  .neat frausier)  i acreage o-x tfa'  •-. yimubi i   is i;:calci   than 
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that on the cone     The displacement thickness for  the cone and 

cylinder is decreased from the  Mangier value,   but only very 

slightly. 

1 
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YOUR PURPOSE so that it may be made available to other requesters.   Your cooperation 
will be appreciated. 
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NOTICE: WHEN UOvaKNMfcNi UK OTHER DKAWIKG5, SPECIFICATIONS OR OTHER DATA 
ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED 
GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THERERV INCURS 
NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT TfcAT THE 
GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR LN ANY WAY SUPPLIED THE 
SAID DRAWINGS   SPECIFICATIONS, OR OT»BR DATA IS NOT TO BE REGARDED BY 
IMPLICATION OR OTHERWISE AS IN AMY MANNER LICENSING THE HOLDER OR ANY OTHER 
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, 
USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO. 
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